

Third Semester FYUGP Degree (Reg) Examination
NOVEMBER 2025
KU3DSCMAT201 - ALGEBRA
2024 Admission onwards

Time : 2 hours

Maximum Marks : 70

Section A

Answer any 6 questions. Each carry 3 marks.

1. If α, β and γ are the roots of $f(x) = 2x^3 + x^2 - 2x - 1 = 0$, find the value of $\sum \alpha^2$.
2. Define an elementary function. Give an example.
3. If α, β and γ are roots of $8x^3 - 4x^2 + 6x - 1 = 0$, find the equation whose roots are $\alpha + \frac{1}{2}, \beta + \frac{1}{2}$ and $\gamma + \frac{1}{2}$.
4. Show that $x^7 - 3x^4 + 2x^3 - 1 = 0$ has at least four imaginary roots.
5. Show that $x^5 - 2x^2 + 7 = 0$ has at least two imaginary roots.
6. Write the negation of each statement:
 - (a) If she works, she will earn money.
 - (b) He swims if and only if the water is warm.
7. Write the converse and contrapositive of the statement "If productivity increases, then wages rise".
8. Define truth set of a propositional function. Find the truth set of the propositional function " $x + 2 > 7$ " on the set of positive integers.

Section B

Answer any 4 questions. Each carry 6 marks.

9. If α, β and γ are roots of $f(x) = x^3 - x - 1 = 0$, find the equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$. Hence write down the value of $\sum \frac{1+\alpha}{1-\alpha}$
10. Transform the equation $x^3 - 6x^2 + 4x - 7 = 0$ into an equation lacking the second term.
11. If q, r and s are positive, show that the equation $f(x) = x^4 + qx^2 + rx - s = 0$ has one positive, one negative and two imaginary roots.
12. Prove that there are infinitely many primes.

13. Let $p(x)$ be a propositional function defined in the domain $A = \{1, 2, 3, 4, 5\}$, where $p(x) = x^2 < 20$.

- Find the truth set of $p(x)$.
- Express the statement " For all $x \in A$, $p(x)$ is true " using quantifier and determine it's truth value.
- Express the statement " There exists an $x \in A$ such that $p(x)$ is false " using quantifier and find it's truth value.

14. Let $q(x)$ be a propositional function defined on the set \mathbf{Z} of integers where $q(x) = x^2 - 4x + 3 = 0$.

- Determine the truth set of $q(x)$
- Express the statement " There exists an integer x such that $q(x)$ is true " using quantifier and negate it.
- Express the statement " For all integers x , $q(x)$ is false " using quantifier and negate it.

Section C

Answer any 2 questions. Each carry 14 marks.

15. (a) Find all partitions of $S = \{a, b, c, d\}$.

(b) Let $\{A_1, A_2, \dots, A_m\}$ and $\{B_1, B_2, \dots, B_n\}$ be partitions of a set X . Show that the collection of sets $P = \{A_i \cap B_j\} \setminus \phi$ is also a partition of X .

16. Define partition of a set. Let R be an equivalence relation on a set S . Prove that the quotient set S/R is a partition of S .

17. If α , β , and γ are the roots of $x^4 + 8x^3 + x^2 - x - 10 = 0$, find the values of $\sum \alpha^4$.